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1. INTRODUCTION AND SUMMARY

p Discriminating between the seismograms obtained from natural

earthquakes and seismograms obtained from underground nuclear

explosions is a key procedure in monitoring present and future

compliance with treaties limiting the testing of underground nuclear

explosions. There is an enormous literature on this problem. A

complete discussion of various approaches to seismic discrimination,

up to approximately the middle 1970's is contained in the book by

Dahlman and Israelson (1977). This book discusses most of the

computational procedures which have been proposed whereby

seismograms can oe anaylyzed in order to infer whether they are

earthquake like or explosion like. There has been much progress

since this book was written, principally in the testing and

comparison of various discriminants. Most studies, however, have

Deen of a piecemeal nature because it is only recently that large

digital data sets have been collected together, allowing rigorous

comparison of the efficacy of tne various discriminants.

Perhaps tne most complete examination of methods of seismic

discrimination was of the Area of Interest (Al) experiment sponsored

by tne VELA Seismological Center (VSC) and completed approximately a

year and a half ago. For this experiment, seismograms recorded at

approximately 30 stations around the world for about 120 events were

collected together and distributed to three participants to apply

seis-mic discrimination processing. The results of this test have

oeen extensively reported (Rivers, et al., 1979a, 1979b, 1979c;

Savino, et al., 1979, 1980a, 1980b; and Sax, et al., 1979a, 1979b).

A review of the findings of this experiment has been provided by

Rivers, et al. (1981). Rivers has presented numerous conclusions

and recommendations basea upon nis review of the experiment. They

Dasically fall into two categories. The first are problems

associated with the fabrication of the data base (for example, the

difference in magnitudes of the earthquakes versus the explosions),

and second, discrepencies in computational methodology between the

various participants (for example, differences in phases identified

for various measuremer s).
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This report describes the results of a study focused on the

t computational metnodology for seismic discrimination. In

particular, it describes the development of a set of computer

programs for performing automatic seismic discrimination. This

study nas resulted in the design and the implementation of a bare

bones automatic discrimination computer program which makes

automatic measurements on seismograms and then, based on prior

analysis of training data, classifies the seismograms and assigns
probabilities to that classification. The design, operation and

performance of this automatic system are discussed in Chapter 2.
Section 2.1 of Chapter 2 focuses upon questions of the data base,

the measurement of seismogram features (discriminants), and,

finally, the linear discriminant analysis of these features to

perform classification. The rest of the chapter talks about more
advanced seismic phase characterization methods and discusses some

of thle qualitative aspects of regional and telesei~mic

discrimination. We note here tne problems of formal incorporation

4of network measurements such as location and depth, which it is
difficult to quantify within tne available statistical framework.

Chapter 3 discusses the statistical framework which is based
upon the Fisher Linear Discriminant. Theory shows that this is the

t best discriminant for some problems (Gaussian errors and equal

covariance matrices). 'We have adopted it here, not so much on

theoretical grounds, Dut from the principal of parsimony. That is,

it is the simplest model whichl performs the classification. We also

nave adopted this model for another reason, which is based on our

belief that it is inevitable in the study of this problem that one

will wish to partition the data (for example, within rather small

magnitude ranges or for specific source locations). Partitioning

* inevitably will entail very small sample sizes; hence, inferences

mace upon them with complicated statistics will not, in general, be

very robust. Although most of the discussion in Chapter 3 has been
gleaned from standard texts in multivariate data analysis (Young and

* Calvert, 1974; Gnanaoesikan, 1977), we have added two new ideas in

applying these methods to the discrimination between explosion and

'I2
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earthquake seismograms. The new statistical idea presented here is

the use of damping to suppress small eigenvalues after singular

value decomposition of the sample covariance matrices. This is

closely related to the technique of ridge regression. The other new

(to most seismologists) trick whicn has been added, is the

application of jackknifing (leave-one-out) for estimating

misclassification probabilities. Misclassification probabilities

inevitably reflect the composition of the training data. We find

that misclassification probabilities based upon traditional

statistics (t-test for example) generally are more lax than the

probabilities inferred from jackknifing. We have not, in this

'I study, applied the z-transformation or any other data dependent

'I transformation in an attempt to normalize the measurements for we

* believe that the jackknife procedure provides more realistic

estimates in the real world.

A nice feature of the linear discriminant analysis is that it

reduces the multidimensional data space for each event recorded at

each station to a single scalar measure, in many cases making it

easy to spot outliers or anomalous seismograms. We also have not

formally discussed the analysis of variance or the importance

functions of the various discriminants. Chapter 3 concludes with

remarks on the effects of measurement error, the problem of missing

measurements, and some speculations on more robust techniques for

estimating means and covariances of the training data.

The last chapter, Chapter 4, discusses a preliminary jackknife

study of tne variable frequency magnitude (VFM) results obtained by

Savino and his coworkers in the Area of Interest experiment. We

compare the jackknife results at three specific stations against the

bivariate methods usea previously to perform discrimination. This

section addresses some of the issues raised by Rivers in his

discussion of data smoothing problems associated with the Area of

Interest experiment.

The conclusions and recommendations which have come out of

this study are as follows:

T3
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1. The speed at which feature measurement and the jackknife
calculation operate is so fast that the application of
these methods is limited only by the available data. The

hindrance to further progress in automatic discrimination
is to be found in the areas of data preparation and the
fabrication of homogeneous data sets.

2. The structure of the programs is flexible enough that
other discriminants can easily be hooked in to the

computational procedures. The results of these new
* features are easily added to the discrimination data

base.

3. The improved statistical methods have only been applied
to tne VFM discriminant, but similar calculations are now

underway on the Geotech data base.

4. We nave recognized problems associated with single

station versus network data, and problems associated with
the incorporation of measurement errors into the

analysis. These, however, have not been resolved.

5. A number of known seismic discriminants were not tested
in the AI experiment, some of wnich are traditional

time-domain methods and some of which are more advanced
waveform modeling methods. It is urged that automatic
algorithms be implemented for these techniques and
incorporated in the code. This would not only relate the

contemporary methods more closely to the older methods,
but accelerate the testing of possible future

discriminants. Among the methods that fall into these
classes are time-domain waveform measurements, depth
phases ano ARMA models (see Farrell, 1981, and this

report, Sections 2.2 and 2.3).

There are three principal researcn applications for this

Automatic Discrimination code. The first is to facilitate the
4

testing of known discriminants on very large (10 seismogram) data

4
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sets. It is reasonable to expect that a complete analysis of a data

set this size could be done in a man-month. The key to reaching

this objective lies entirely in the area of data preparation and

data base management. We recommend, for example, that a routine be

established now for the regular acquisition of all SRO recordings

for every one of the forty or so underground explosions set off each

year. The second research application is the use of the code to

test new discrimination algorithms. The key to reaching this

oojective is the writing of an automatic code and its incorporation

in the existing package. The third application, and perhaps the
most exciting, is to use the code for fundamental studies in

regional and teleseismic wave propagation, in particular, path

dependent dispersion and attenuation for both the body waves and

surface waves. The objective here would be the deterministic

moaeling of tne feature vector using source and propagation

physics. The less we rely on statistics, and the more we can apply

determinism, the greater our confidence tnat we can identify sources

located in regions for wnich the historical records are sparse or

absent. In our view, this is the real challenge in seismic

discrimination.

*1
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2. AUTOMATIC SEISMIC DISCRIMINATION

This chapter discusses the structure and operation of an
automatic seismic discrimination program package now operational on
the POP 11/70 computer system at the Seismic Data Analysis Center

t running under the UNIX operating system. Since this project has
focused upon the design and the implementation of a discrimination

package, very little data has been processed, and no important new
results in the area of discrimination per se are presented here.
The prime objective has been to fabricate an architecture which will
allow the incorporation of a much more complete set of
discrimination measurement procedures for a planned extension of the
Area of Interest experiment soon to occur. We have currently
implemented only the variable frequency magnitude, the complexity,
and the surface and body wave magnitude discriminants. Other signal
measurement algorithms will be applied as this work continues.
These may taKe the form of alternate methods for calculating
traditional discriminants (for example, the various ways of
computing the surface wave magnitude), and they may also incorporate
the results of current research in advanced methods of seismic
discriiiination, particularly those which may be applicable to
recordings obtained at regional distances. Some preliminary results
in this latter area are discussed in section 2.2. Finally, in the
concluding section of this chapter, we discuss problems associated
with incorporating discriminant measurements which it is difficult
to quantify and hence, cannot be incorporated in the current
statistical framework.

The procedures discribed here operate by accepting one or more
seismograms from a digital data base, analyzing them, and then
producing, on a station-by-station basis, an assessment of whether
the individual seismograms are more nearly explosion like or
earthquake like. This procedure operates with almost no analyst
intervention. Essentially, the result of the processing is to
reduce eacn seismogram to a single number, its scalar discrimhinant

-- this number being positive if the seismogram is earthquake like

6
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and negative if it is explosion like. This is clearly a perilous

0 operation, but the application of tnis automatic discrimination
program to a collection of seismograms will not be used in

isolation, for there is parallel work underway at Teledyne Geotech
in the area of interactive discrimination whereby more searching

t questions can be asked of the individual seismograms. The purpose
of the automatic system is twofold. One, it is to make measurements

of features which are thougnt to contain information about event
type; and secondly, on the basis of training data, to classify these

tfeatures. One important result whichi accrues from an automaticI
system such as this is that it will make the searching of voluminous

waveform data bases much simpler than it has been in the past. We
nope this capability will allow the easy recognition of outliers in
the data, that is, stations or events which deviate markedly from
past experience. Thus, the final results of this processing cannot
be divorced from the training data upon which the discriminant

decision is made at the current stage of development. The training

data we work with is the Area of Interest data set mentioned

2.1 SYSTEM' DESIGN

*Tne automatic seismic discrimination module as currently

implemented consists of two computer programs and four data

structures. The connections between tne programs and the data

structures is blocked out in Figure 1. In this figure, we see at
* the top the first program which is a feature measurement program.

This program accepts seismograms from an event oriented data base,
recognizes the arrival time of phases within each of the

seismograms, and then automatically makes measurements upon those
phases. Correctly choosing the time window over which measurements
are made is a critical operation for events with body wave magnitude

less than about 5.0. For events larger than this, most reasonable
event detectors will find the P-wave onset to within a half-second

* or so; the the surface waves, over most paths, stand well above the
background noise for a broad enough frequency band that the

7

SySatrfs. SCIENCE AND sorrwApr



C I S C

J~~~ .... . .. .. . .

ca 0
.0 0

00

.2 4A4-

_2.

0 "

0 U 4.- 100

'4Jl 4)

E
~4)
41

o 4.

*4)

.S 4-

0L'.<

<,

0 U

0 0 
.

I >

8

sysTEMS. SCIENCE AND s0prWARI

0 .......



dispersion can be measured. To provide added flexibility in the
choice of analysis window in the automatic code, there is a
provision to use analyst start time for records which have been
visually picked.

The result of the automatic measurements is the creation of an
event feature working file which contains a vector for each
individual station found in ti.,: waveform data base. This feature
vector contains, for example, the spectral amplitudes at a set of
frequencies; it contains the complexity of a recognized phase; and

V it will contain other features derived from new algorithms to be
added later. Typically, the dimension of the feature vector for
each station is of order fifty.

Hiaving located the phase of interest in each seismogram and
* made tne measurements on that phase, the dot product program takes,

on a station-by-station basis, a linear combination of these
features and evaluates the scalar discriminant for the seismogram.
The feature weights file contains a vector for each station. This
vector is just the set of weights which have been inferred from a
prior analysis of training data.

The procedure for estimating feature weights is shown in the
uottom nalf of Figure 1. It involves creation of training data,
feature file, analysis of the file with the Fisher discriminant, and
then a jacKknife (see Chapter 4) to derive the error probabilities.
As more and more seismograms are processed, the event feature
working files grow. Eventually this, itself, constitutes a new and
expanded data set, and we envisage performing the discriminant and
jackknife analysis on this feature file to update the weights to be
used to analyze subsequent data which may be processed.

The results of the dot product program are both displayed for

each event as it is processed, and also added into a new data base
which we call the linear discriminant station queue. Data in this
queue summarizes the performance of each individual station over all
the events whicn comprise the total data base. Thus, for every
seismogram contained within the data base, we derive a single number
which is displayed and queued for further analysis.

9
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The procedures contained within the feature measurement

program are outlined in Figure 2. There are four principal elements
P to tnis program. The first element is a block which acquires a

single seismogram from the data base. The second block processes
the seismogram through a comb of Gaussian filters to derive the

spectral amplitudes for all pulses occuring within the time window.

t* t The phase detector, which is based upon the MARS detector (Farrell,
et al., 1980) analyzes the envelope peaks and decides when the phase

occurs within the record. The final block in this program performs

the feature measurement operation. Not only does it copy the

variable frequency magnitude discriminant (Savino, et al., 1980a) to
the feature file, it also calculates the signal complexity (Rivers,
et al., 1979b, page 33) and measures the spectral magnitudes m b or

4M s(Bache, et al., 1980), depending on whether the input data was

a oody wave or a surf ace wave. It is clear from the structure of
this program that additional feature algorithms may easily be

incorporated and added to the event feature file.

The other program element in the automatic discrimination

package is very elementary (see Figure 3). We call this the dot
product program for its principal function is to take a weighted sum

of the several feature vectors measured from the various

seismograms. The weight vectors are based upon prior analysis of

otner seismograms recorded at each station. The dot product

operation thus reduces each feature vector to a single scalar, the
discriminant. In addition to forming the dot product, however, we

also provide estimates of the probability that the seismogram at
each station arose from an earthquake source or an explosion

source. This decision is based upon discriminant means and

variances ootained in the course of the analysis of the training

data from each station.

2.1.1 Data Base Preparation

The creation of the event organized data base is the most time

consuming and, in many respects, the most critical operation in the

10
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0OT PRODUCT PROGRAM

READ FEATURE VECTOR

OR F NEXT STATEON

AND FEATU E AN)

p0 I MOI- FAUE P

EIS

M TCHIGS VENT

S D*- atx* b

pX exth[ (t -rd)2 o2 anAd ia

[ UPDATE
STATION QUEUE

YESFETR

INO

PRINT RESULTS 
!

FORl THIS EVENT

Figure 3. The dot product tprogram evaluates the linear discriminant
function dih=raknXjrd+b k where xi is a column vector of features

fro th it ecorig of an event, and ik and bk are the weight
vector and constant appropriate for the -th seismic station.
The scalars, di, comprise the single station estimates of the
character of the event.
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entire analysis. Data preparation begins with the receipt of subset

format data tapes obtained from Data Services at SDAC. TheI,

individual seismograms contained in the subset tapes are transcribed

into separate time series working files on the POP 11/70 computer.

The suoset format header information, giving such quantities as

station codes and event origin time, is displayed on the terminal so

that the analyst can build the event header file. The data base

creation program (see Figure 4) takes the individual time series for

one event at the several stations and tailors them into one of two

uniform formats, one format applying to the short period time-series

and a different format applying to the long period time-series. In

tne Dottom half of Figure 4, we show that there are a variety of

interactive display programs which can show the three principal

elements in tne event waveform file - either the event header, or

tne short period time series or the long period time series.
I

The structure of the data base and its management currently

relies heavily upon features contained within the UNIX operating

system. This operating system defines directories, subdirectories

ano files which are linked together in the tree structure outlined

in Figure 5. In this figure, if we look at the directzry, MVO (for

multivariate discrimination), we see this directory is linked to

several subdirectories. Reading those links from right to left, a

suodirectory is defined for each distinct seismic data type. The

one that we have entirely concentrated upon thus far is the SRO data

type. This is again linked to subdirectories, each of whicn

pertains to SRO records for a particular event; for example, ev317

as shown in the figure. Finally, grouped in this directory are the

five files which actually contain the seismograms for event 317, or

the header information for event 317. SPZ denotes a seismogram file

whicn contains all the short period vertical recordings at all the

SRO stations for event 317. Likewise, LPZ, LPN and LPE give the

long period vertical, north and east seismogram files. Moving to

the left in this figure, we see that another directory at this level

is the features directory which has branches to the event feature

files constructed from tne analysis of all the events contained in

13
SYSTEMS. SCIENCE AND SOrTWARE



I-l

ca.

U.U

CL C- S.

V En

ca~ 0

ccu

b. 00 cc rOC4AL = (
"o aO P ~ c C

W Go

CL .41
A oL

4D.C0

44

Ua

S..

"-U -a %- .

m C

0 4-

&.0 W s00C0
I3'

02,.. .

0 c

'4

L.A. svsr7Tms. SCIENCE AND SorrwAmE



4.1

L..~L

0 4.14

4J ><

&I1 w~

j0 >

4J4
0 II/0 )l0 /0.I , %.

.C41
c".

cc0 CL

/- 41.5M

A ~~c If 
- 5

* 4

E4J

If -- 0.

01h 4')4.

0~. 4J G~

0 0 r

C.)

U-

15

SYSTEms. SCIENCE AND SOFTrWApR



tne data directories. The station directory shows links to

particular station dependent quantities; for example, frequencies

and bandwidtns appropriate for the analysis for each station.

Finally, tne MVD directory has another branch which points to the

weights files used in the dot product analysis.

The makeup of the header file for event 317 within the SRO
directory is shown in Figure 6. We see that the file begins with

event specific information such as the class, either explosion or

earthquake when this is known, the location, the origin time, and

other event related data. Then we see a catalog of all the SRO

stations; the code number used at VSC to identify the particular

components at the particular stations; the short period and long

period sample rates; the start times of either the short period

seismogram's window, or the long period seismogram's window; and,

finally, the geographic relationship between each station and the

event.

Figure 7 shows tne six available short period vertical

component seismograms for the SRO stations which recorded event

317. This figure shows a completed plot of all the data contained

within the short period vertical file for this event. These short

period files are constructed by taking a fixed length of time

series, whicn is exactly 50 seconds long. Furthermore, the window

for the time-series is tailored such that the 'expected arrival

time' (based on the Herrin tables) for tne P-wave at each station

occurs precisely at the fifteenth second within each seismogram.

Since the SRO snort period recordings are obtained from an event

trigger, in many cases the pretrigger data is shorter than the

desired 15 seconds, and in all cases the trigger turns off well

before the subsequent 35 seconds have elapsed. To fill out tne

data, zeros are appended to the beginning and ending of each record

to obtain tne predicted body wave arrival at the desired 15 second

time. The result of this is to have a rigidly structured file which

basically contains a reduced travel-time plot of the seismograms.

This shows, for example, that the signal at KAAO has probably been

I
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obtained at a regional distance, and indeed the station is only 17
degrees away from the event. Station ANTO has an observed arrival 2

or 3 seconds later than that predicted from the conventional

travel-time table. Further, station TATO was noisy during tnis

interval of time, and station MAJO has an arrival 2 seconds or so

earlier tnan that predicted. The scale factors along the bottom
show, from top to bottom, the multiplier used to scale each trace to
fill the plot window. TATO (5.8) was a particularly weak recording.

It might be thought that the fabrication of such a rigidly
structured data base entails unnecessary labor on the part of the
analyst before any useful processing can be undertaken. We think,
however, that there are many advantages to this procedure. Probably
tne principal one is that it means that the header file for each

event can be much simpler than would otherwise be necessary; it
means that the data may be displayed with rather simple graphics
programs: it means that the processing can use standard parameters
that do not rely upon the erratic start time which it would

otherwise be necessary to use; and it means that the scientist
examining the seismograms and the results of the processing can
maintain in his mind a mental image of what the seismograms look

like and where the arrival times occur. All these factors make it
easy to control the aata quality.

A similar philosophy has guided the construction of the long
period seismogram files, an example of which is shown in Figure 8.
For the long period seismograms, the available data is tailored so
that the window for eacn station is aligned to place a surface wave
traveling at a group velocity of 3 km/sec at the nine hundredth
second of the 2000 second record. Again, one can see for station
KAAO, it has been necessary to pad the available data with zeros

ooth before and after the seismogram. Station TATO (scale factor
4.5) was again particularly noisy for this event.

The final display (Figure 9) is a geographical plot of Eurasia

showing the location of the event and tne positions of the

seismogram stations which recorded it.
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2.1.2 Feature Measurement

* A great variety of techniques have been proposed for measuring

features on seismograms which may yield seismic discrimninants. Even

among those which are susceptible to automatic analysis, only a few
have been implemented in actual algorithms in the current automatic

*discrimination program. We have elected this approach for two
reasons, tne first of which has been the emphasis of this project
upon the definition of an automatic discrimination architecture and
its demonstration by the actual processing of real data. The second

reason is that tne derivation of feature weights must rely upon the
existence of a previously processed set of training data and the
most accessaole set of training data available to us has been the
variable frequency magnitude measurements reported by Savino, et al.
(1980a). It is recognized that many other seismogram features
(discriminants) have been proposed and have been studied in more or
less detail. We note particularly, the Al lists of discriminants
presented by Rivers, et al. (1979a), and Sax, et al. (1979a). Other
references for automatic algorithms which we intend to incorporate
are given by von Seggern (1977), Chiouris, et al. (1980), and Bache,
et al. (1981).

The structure of the feature measurement program, one of the
two key elements in the automatic discrimination procedure, was
previously shown in Figure 2. Noted in the right hand portion of
that figure are the features (discriminants) with wnich we have
2btained actual experience in this project. The discriminants shown

there as existing in subroutines are the variable frequency

magnitude discriminant, the time-domain complexity discriminant, and

the spectral methods for estimating the body wave magnitude and the
surface wave magnitude. Because the methods of discrimination which

we use presuppose the existence of a large set of training data from
which discriminant weights can be obtained, the results described in

Chapter 4 of this report pertain most particularly to the variable
frequency magnitude discriminant, and that is the only discriminant
which we are able to process at the moment through the entire
automatic discrimination 

routine. 22
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While developing the feature measurement algorithms, extensive
use has oeen made of visual 'displays of these measurements in order4to check the calculations. A selection of these displays is shown
next to demonstrate in more detail the methods of feature

measurement and some of the parameters used in the several
4j ~algorithms. When processing a large body of data, it is expected

that these graphical displays of the various features will not be
invoked, ana, indeed, the display of the features more properly

1falls in the area of interactive discrimination rather than
4 automatic discrimination which focuses on the end product; that is,

the classification of the various seismograms.

Figure 10 shows, at the top, the seismogram for event 317
(Shagan R~iver explosion) recorded on the short-period component of
the SRI) station at Kabul. Below the seismogram, the narrow band

* envelope functions are plotted for ten frequencies spanning the
range from 0.25 Hz at the top to 4.5 Hz at the bottom. Kabul is
only slightly more than 17 degrees away from the Shagan River; so
tne largest phase picked for this event does not correspond to the
first arrival. From the widths of the envelope peaks shown on the
various narrow band traces, it can be seen that the time resolution
of the filters used to process this seismogram all have a time
resolution on the order of one second. The dotted line up the page
shows the time at which the automatic detector identified the
biggest phase on the seismogram. For frequencies of 2.0 Hz and 2.5

* I Hz, it can be seen that the phase arrival corresponds to a dip in
tne spectrum. The actual feature which is measured for these

envelope functions is the amplitude of the peak in the envelope
either on, or nearest to, the dotted line defining mean phase
arrival.

The comb of filters usually used for processing short-period
seismograms, while spanning the same frequency range as that of
Savino, et al.(1980a), contains ten rather than forty frequency
bands and has a somewhat lower Q. The number of filter center
frequencies has been restricted in order to limit the dimensions of
the feature vectors.

23
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The result from processing the long-period seismogram from

event 317 as recorded at Kabul is shown in Figure 11. Although the
long-period SRO data contains three channels, vertical and two

horizontal, we analyze at the moment simply the vertical channel.

Again, the top of this figure shows the raw seismogram. Below that

are the ten narrow band envelope functions spanning the frequency

range 0.01 Hz to 0.1 Hz, with a dotted line showing the time at

which the automatic phase detector identified the maximum signal

* amplitude. Here, again, the peaks in the envelope function deviate

as much as 10 seconds from the mean phase arrival time, and the

feature which is measured from these envelope functions is the

amplitude of the envelope peak nearest to the mean phase arrival

time.

The result of the narrow band filter analysis of the

short-period vertical and the long-period vertical seismograms is a

set of 20 ground motion amplitudes, ten for each frequency band.

These ground motion amplitudes (expressed in nanometers) are

corrected for instrument response and then converted to magnitudes.

For P-waves, the usual Gutenberg formula

mb(f) - loglo(A(tp )f)+B(a)

is used, where tne distance correction is taken from Veith and

Clawson, (1972). For surface waves, the formula

Ms (f) - log 10(A(tp)f) + 1.66 log10A + 3.3

is used (Dahlman and Israelson, 1977, page 69). A plot of the ten

short-period spectral magnitudes for the Kabul recording of this

event is shown in Figure 12. Also shown by the dotted line at the

bottom of Figure 12 is a spectrum calculated for a noise window

preceding the arrival of the phase. The noise spectrum is defined

by the formula

mb(f) = 1ogl0 (Af) + B(A).

where A is the mean envelope amplitude in the noise window.

25

SysTEMS. SCIENCE AND SOFTWARE



'4-

3

m Cm* '0

c CL

C

-A

s- 0)

4-

cu m A w s aU

26 0

Sl~rA1. CINC AD oirWM



kaao

... . 10.4

$S

6.5 - signal

4.5

4
[I

3.S

2.5-
6 .5 1 .S a 2.5 3 3.5 4 4.5 S

treq. (Hz)

Figure 12. Signal-to-noise ratios may be estimated from plots of narrow
band envelope magnitudes and pre-event noise magnitudes. The
solid curve in the figure (for the phase identified in Figure 10)
is just the VFM part of the event feature vector for station
KAAO.
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Ten separate long-period magnitudes are measured and written

to the station feature vector for each event. It is not possible at
present, however, to take the linear combination of these ten

magnitudes which best performs discrimination because there does not

exist a set of training data from w:.ich the discriminant weights can

be evaluated. It is possible, however, to make traditional

bivariate mb M plots for each station and each event to compare

the short-period and long-period estimates of the spectrum

magnitude. An example of this is shown in Figure 13. For making

tnis plot, the simplest possible spectral estimates of surface wave

and body wave amplitudes have been used. These are defined to be

mb = mb (1.0 Hz) and Ms = Ms (0.05 Hz) with no spectral
smoothing or other weighting applied. The slanting line across this

figure shows the traditional discrimination relationship

Ms a mb-l.0.

As tne quantity of processed data grows, that is, as the

feature file becomes larger and larger, we want to compare the new

results against all previous ones. Again, this function eventually

will fall in the domain of interactive discrimination, but simple

bivariate plots of the VFM discriminant are useful for comparing new

results against the previous VFM data taken by Savino, et al.

(1980a). The example shown in Figure 14 superimposes plots of mb

(4.0) and mb (0.55) for event 317 at KAAO on top of the data

points calculated by Savino, et al. for Area of Interest seismograms

obtained at the same station. It is clear that, upon the basis of
these two isolated frequencies alone, event 317 falls within the

explosion region of the VFM discrimination plane identified earlier

by Savino.

2.1.3 Linear Discriminant Analysis

It was described earlier (Section 2.1 and Figure 3) how

automatic discriminantion is effected by taking a linear combination

of weignts multiplied by features (the dot product) for each

station. The principal end product of this calculation is a display

28
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Figure 13. Following featqre mealurement, bivariate plots of fe, res
(in this case mb and Ms) may be produced.
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Figure 14. As the event feature file grows, the bivariate plots of features
(in this case mb (high) versus mb (low)) for many events at
a single station may be shown together.
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similar to that shown Figure 15. The top part of this figure shows

information pertaining to the event. This is simply copied from the

event header file and written out to the interactive terminal. The

bottom half of the figure shows the results uf performing the

automatic discrimination for the set of stations listed in the left

hand column. For each station, the next two columns give the number

of features located in the feature vector, and the number of

features for which there are corresponding weights contained in the

weights vector. The scalar discriminant d*, evaluated by

calculating the dot product of the features for which weights have

been found is shown next. (The misclassification probabilities are

to appear as two further columns.) At the bottom of the page, the

scalar discriminant d* for all available stations is plotted on a

norizontal scale ranging from -2 to +2, our convention being that

when the discriminant d* is negative, the event is explosion-like,

and when it is positive, it is earthquake-like. This plot of d* is

similar to those discussed later in Chapter 4 of this report.

Figure 15 shows tnat when the weights for station CHTO, KAAO,

and TATO, as derived from the Fisher discriminant analysis of the

Area of Interest VFM data, are applied to a previously unclassified

event (Event 317, a Shagan River explosion), it is correctly

classified as an explosion at all three stations.

As more data are processed, not only will the feature files

for each event and all stations grow, but also the set of

discriminant scalars for all stations and all events will accumulate

as well (Figure 16). It is planned that these two data sets will be

examined in order to identicy anomalous events or peculiar

stations. These results of the processing are to be used to define

a new augmented data set comprising the catalog of feature vectors.

They are then to be analyzed afresh in order to derive new feature

weights so that the reliability of the discrimination of new eventsI
may be improved.
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Figure 16. As the suite of processed events grows, the performance of the
linear discriminant will be studied on a station-by-station
basis by generating station-oriented rather than event-oriented
displays.
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2.2 TELESEISMIC DISCRIMINATION PROCEDURES

One result that has become apparent from this work is that
there is a clear requirement to separate both conceptually, and in

the software, the regional discrimination problem from the

teleseismic discrimination problem. Several persuasive arguments

" have led us to this approach. First, of course, much more is known

about teleseismic discrimination: algorithms for discriminants can
I i be written down; reasonably good data bases have been collected

together; algorithms have been tested in the batch-processing

environment during the AI experiment; and, finally, the definition

of a "hands-off" automatic code is well underway. Another reason

for separating the two discrimination problems is that the
short-term objective of this project must be to concentrate on the

teleseismic discrimination because of its great impact on the GSS

system; yet, not too far in the future, we must be ready with

automatic ways of processing single channel or event organized
regional signals in case of NSS seismic network deployment. For

example, the Regional Event Location System (RELS) with which the

automatic discrimination system must be compatible, is focused on

regional research, yet initially it will have a data base consisting

mostly of teleseisms. Finally, certain practical problems such as
association, location and magnitude estimation are performed quite

differently for the two classes of signals.

Emphasizing the conceptual differences between regional and

teleseismic discrimination and the practical reasons why parts of

the software should probably be kept distinct somewhat overstates

the polarization that we believe actually exists. A trivial merging

of the two problems exists with current operational requirements,

for a single event can appear as a regional signal at some stations

and as a teleseism at others. This dichotomy was perhaps most

clearly apparent in the work of Savino, et al. (1980a) where

effective discrimination at Kabul (KAAO) was found to require

classifying events by distance, i.e., separating them into four
regional or teleseismic categories. It is anticipated that there

34

SYSTEMS. SCIENCE AND SOFTWARE

_2 A '.



will be large areas of overlap between the teleseismic

discrimination problem and the regional discrimination problem.

When the data to be processed consists of multiple records

from a single event (i.e., associated signals) rather than an

isolated waveform, there are two possible ways to proceed. One way
*i presupposes that, as an adjunct of the association process, a valid

location has been found. In this case, we can a priori sort the

individual traces by epicentral distance and thus classify them as

being either regional or teleseismic. Alternatively, we can

temporarily ignore the location information, sort automatically, and

the ex post facto use a separate associated location/algorithm.

A discussion of the current feature selection algorithms is

presented in Section 2.1b. We elaborate here other matters which

pertain to Teleseismic Discrimination, discussing specifically: (a)

*definition of discriminants, (b) feature selection and measurement,

and (c) testing and evalution.

(a) Definition of Discriminants

Telesismic discriminants may be separated into two categories,

those wnich require prior knowledge of the event location and those

which do not need such knowledge, or which depend on location

knowledge only weakly. Generally speaking, the requirement for

location information is equivalent to a requirement for associated

signals at three or more widely separated seismic observato,-ies.

(Although large arrays such as LASA and NORSAR can locate an event

with fair accuracy, the smaller arrays in more common use have beams

much too broad to furnish more than very approximate location

estimates.) In the former category fall the location discriminant

itself, depth and network mb-Ms. In the latter category fall

complexity and several frequency domain discriminants, including

VFM, or spectral ratio, automatic mb and M and higher moments

of frequency.

Location and depth are peculiar discriminants, the use of

which in the context of automatic signal processing is not clear at

35
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this time. Although automatic phase identification and timing is
necessary for automatic location (and depth estimation), it is

certain that location and depth must be treated quite differently
from other discriminants. rhe crux of the matter is that the
problem of bias in the training data is paramount for these

quantities. Furthermore, depth, when available, is either of

overwhelming significance (e.g., deep (100 kin) earthquakes can look
explosion-like by all the usual measures) or is irrelevant. Thus,

knowing that an event is shallow, say less than 35 kin, is useless

for discrimination. Location is peculiar in a different sense.
There are large parts of the area of interest in which neither

earthquakes nor explosions have occurred. Suppose now a new event
is found to locate in a previously silent region. Is that fact
taken alone of any use in discrimination? Conversely, suppose an

* event is found to occur in, or near, a known test site; is that
information alone useful for deciding whether the event is an

explosion or earthquake? In both these instances, the location

information might be the key that intensive analysis is warranted,
but it seems not to help answer the discrimination problem.

It is absurd, of course, to suggest that location is

irrelevant for discrimination (although indeed some analyses in the
Al discrimination experiment did ignore location). The clear way

location enters is througn the source and station regionalization of

discriminants. An example of source regionalization is the problem
of Lake Baikal. An example of station regionalization was the
discovery by Savino, et al. (1980a) that, for the VFM discriminant
to work most effectively on the Al data set, it was necessary to
select a distinct pair of separation frequencies for each station,
and for a given station there is some evidence that the separation
frequencies depend on epicentral distance.

The mathematical way of expressing this geophysical phenomenon

is to say that our data (discriminants from many events at many
stations) do not come from a single homogeneous population, or
rather two populations, earthquakes and explosions, but instead,
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from a multiplicity of populations, each with its own
variance-covariance structure. It is a well-known principle in

statistics that if you mix good data together with bad data, the bad

data always dominates. The practical illustration of the principle
in the context of seismic discrimination is the comparison of VFM
scatter plots f or single station measurements versus network
averages. Based upon network average VFM scatter plots,, one would
be tempted to dismiss the method because of the large overlap in the

explosion and earthquake populations. It is only when the VFM
discriminant is studied on a station-by-station and source-regio~n by

t source-region basis that its power emerges. It is quite possible
that tnere is a similar hidden structure in the complexity
di scrimi nant.

4 (b) Feature Selection and Measurement

Feature selection (Calvert and Young, 1974, p. 224) is the
word used in mathematical statistics to connote the first (and often

empirical) step in the hierarchy of operations whereby one distills
an enormous quantity of data down to a few bits of information.
Oftentimes tne process of feature selection is guided by intuition,
or ancillary information. For example, we have a physical reason
for supposing that earthquakes might be more complex than
explosions, or that explosions generate less surface wave energy
than earthquakes of the same bodywave magnitude. These are features

which, if it is plausible, ought to be selected for further study.
The purpose of feature selection is to reduce the size of the data
space so that exotic numerical calculations are possible. One hopes
first tnat by Combining the features together, one can improve the
performance of the discrimination procedure with poorer quality data
(i.e., lower magnitude). Furthermore, the calculations required to
assign classification probabilities from analysis of numerous
training data are computationally unfeasible without feature

selection.
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We follow the narrow definition of terms commion in the

statistics texts and distinguish carefully between feature selectior
and feature extraction. Feature extraction we apply to the next
hierarchical procedure where some method, for instance, principal
component analysis, is used to effect a further reduction in

dimensionality, but based upon rigorous mathematical procedures

rather than qualitative or semiquantitative procedures. For

example, with reference to the Al experiment, the feature selection
(or measurement) part of the analysis was the procedure of choosing
and calculating a number (between 20 and 40) of parameters which
were thought to contain the useful discrimination information in a
100 to 500 term seismogram. The process of feature extraction then

showed that between two and four of the selected features (or linear

combinations of them) were sufficient for reliable discrimination.
For the VFM method, the selected features were 40 narrow frequency

band magnitudes of the P-phase, and the extracted features were the
two frequencies (after polynomial smoothing) for which

discrimination worked best. Likewise, the other studies used a
different selection of features but showed that just three or four
linear combinations hold most of the variance in discriminants.

The method which has been implemented for automatic feature

selection relies heavily on the QHD processing of individual

seismograms. There are three principal steps in the analysis (see
Figure 2). The first of these, called Filter, consists of a data
edit task (TSEDIT) and a multiple narrow band filter (NBF) task.
The second step, Detect, is a phase identification task which picks
the arrival time of the event. The performance of the current

detector has been described by Farrell, et al. (1980), but the
advanced phase detection algorithms described above have not been so

exhaustively studied. Finally, the Feature Selection procedure

consists of further refinement of the frequency domain discriminants
(for example, applying instrument response correction, or converting
signal spectral amplitudes into magnitudes), and calculation of time
domain discriminants and storage of these features on an event
discriminant file.

38

sysrtms. SCIENCE AND soPT wARE



(c) Testing and Evaluation

Whereas feature selection and automatic waveform processing
are at a relatively advanced state of development, the multivariate
statistical procedures are at a more rudimentary stage. The

mathematical statement of the problem, as we currently see it, is
J, described in Chapter 3. In casting those equations into the

geophysical context of discriminating earthquakes from explosions,
we have identified three potential problem areas which it is felt

should govern the testing and evaluation of the automatic
discrimination system. These potential sources of difficulty are:
(1) accounting for missing and erroneous data; (2) combining single

station discriminants into network (or event) averages; and (3) the
size and availability of the training set.

The problem of missing and erroneous data is a very practical
one which we do not yet know how to treat mathematically. We are
lead to consider erroneous data from the following argument. As

the event size decreases, it seems reasonable that the process of
feature selection becomes less precise because the signal-to-noise
ratio in seismograms themselves degrades. Phases become

misidentified, holes appear in the spectrum from noise interference,
the complexity measure sees less and less signal, but more and more
noise, and surface wave magnitude disappears entirely. What are the

implications for discrimination, and how does one quantify tHis

behavior? It is certain that simply associating a standard error
(based, for example, on the noise in each record) with each feature
is not sufficient because we do not know how to use this

information. What we would like to assume, perhaps, is that the
covariance in the feature vector consists of two parts, a
measurement noise part and a geophysical noise part; and, further,
that the measurement noise part can be objectively estimated from a
single record, whereas the geophysical part requires a multitude of

events and stations.
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Another place that missing and erroneous data (it is useful to
think of missing data as ordinary data with absurdly large error
bars) affects the automatic processing is the case when one station
may not report any data from a given event. For example, take a
source near the Caspian Sea and assume Kabul is not functioning.
Then, it is known from the AI experiment (Savino, et al., 1980a)

t that Kabul was particularly powerful at discriminating for this

source region. However, with the best station now missing, how is

it best to treat the data available for the particular event in
question? We suspect that the best answer would be to reassess the
entire historical data base, calculating a unique discriminant

function for the subset of the historical data which best matches
the event in question. To throw Kabul out in this hypothetical

example would mean a massive reevaluation of the training data which

is clearly possible in the off-line (or interactive) environment,
but not realistic for the automatic program package. One can easily

imagine less disastrous cases of missing data (for example, holes in

tne spectrum at particular frequencies), but again, quantifying the
impact of this phenomenon on discrimination and probability

assessment is not yet understood.

A second problem area is the method of joining single station
features into a network discriminant in the case where associated
signals are being processed. Suppose there are n stations and each

of them supplies a single seismogram from which we measure m

features. One, first of all, could lump everything together and
perform discrimination on a single n x m dimension feature vector.
To effect discrimination and assign probabilities, one would have to
process the training data similarly, and this would entail numerous

costly computations. At the other extreme o" dimensionality, one
could average eacn of the m features over all n stations, perhaps as
network magnitude is now usually found, following the method of
Ringdahl. The clear difficulty here is that the station dependence

of discriminants is ignored, and we know from the AI discrimination
results that a less powerful test results. The golden mean, we

feel, lies in a two step procedure whereby an n + m dimension
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problem is solved in stages. First, each station is processed

separately, yielding n "votes" as to the event type. The individual
station votes then must be combined to get an overall discriminant.
We do not yet know how to count the votes in an optimum sense, nor
do we know how to attach a probability statement to the final
decision.

The third and perhaps most important problem area, and the one
'that affects testing and evalution most directly, is size and
availability of the training data. Practically, it is the small
events (say m b < 4.5) which are of most concern to automatic
discrimination because of anticipated treaty limitations and the
fading out of the mb-M s discriminant. This is the event range
which is particularly poorly represented in the current Al data
set. Although events in the required yield range are rare, there is
data which ought to be collected together. Another problem relating
to training data is the use of array information. There i s no
question but that it must be incorporated; yet this cannot yet be
achieved because it is not known how to beam small arrays without
incoherently attenuating the high frequency part of the signal

spectrum. This is a well-recognized problem and is susceptible to
solution, but better beaming procedures must be implemented before
tne array data can be utilized effectively for automatic
discrimination. One further point pertaining to the training dataI is the quantity of historical data which is to be available on-line
to the automatic discrimination processor. When the data set
becomes large enough, one wants to conduct a variety of
discrimination experiments using different partitionings of the
data; for example, by magnitude, by source region, by path type,
etc. These will be done by making one complete pass with the
feature selection code, but many different combinations of feature
vectors will be taken for the statistical analysis. Thus, we

recommnend that further multivariate statistical research be
conciucted in an off-line mode, and that the automatic processor use
the results of that research by simply applying a predefined
algorithm to the discriminant vector. One reason for recommnending
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this procedure is that there will be available an interactive

discrimination system as part of RELS, and we feel that this is the

more effective way to search the archive and fine-tune the

multivariate statistical analysis.

{

ii
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3. AUTOMATIC MULTIVARIATE STATISTICAL DISCRIMINATION

3.1 THEORETICAL CONCEPTS

Our current perception of automatic methods for seismic

discriminaion is based on standard statistical approaches similar to

those summarized by Tjostheim (1981) and discussed in many

statistics textbooks (e.g., Young and Calvert, 1974; Patrick, 1972;

Rao, 1973). We highlight here some of the concepts underlying the

linear discrimination algorithm discussed in subsequent sections.

The seismic discrimination problem can be posed statistically

by treating the various discriminants measured from an event as

components of a vector random variable x, which is called a

discriminant vector (also feature vector or pattern vector). The M

components of x may include any available measurements, including

dissimilar quantities (e.g., mb-Ms , complexity, VFM magnitudes

at various frequencies) or a mixture of individual station data and

network averages.

Given a measurement of x from an unidentified event, the

discrimination problem is to infer the event's class, C. C can take

the values C1 (explosion class) or C2 (earthquake class). The

inference of C must ultimately be based on information about the

multivariate probability densities of x conditioned on the two

classes of events: f(xIC1 ) and f(xIC 2 ). The mean of f(xjC 1),

for example, describes where in M-dimensional space the discriminant

vectors from explosions are expected to fall. Its second and higher

moments describe the expected variability (scatter) in the data,

such as that caused by inherent differences between events,

variations in earth structure, and measurement errors.

When f(xIC 1 ) and f(xIC 2 ) are not known, they must be

estimated - whether explicitly or implicitly - from training data

sets. These are the discriminant vectors observed from past

identified events of each class. The explosion training set will be

denoted as the set of vectors i()' i = 1, .. , Ni, and the

earthquake training set as x( 2) i , .., N
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The class of an event cannot, in general, be determined with '0

100 percent certainty; so a solution to the discrimination problem

must be a statistical statement. A variety of ways of expressing

one's uncertainty about C are possible. One is in the form of
"posterior probabilties" that the event belongs to C1 or C2:

P(C 1 x) and P(C2 (x), respectively. The adjective "posterior"

refers to the fact that the probabilities are determined after x has

been measured. Posterior probabilities require the assumption of

prior probabilities of C1  and C , P(C1 ) and P(C2), which

anticipate the relative likelihood of each class before the event

has occurred. Normally one would set P(CI) = P(C2) 1 1/2.

Bayes' Rule gives the posterior probabilities as

S) f(xC1 )P(C) (1)
P(C1 ) f(x.C1 )P(C ) + f(.IC2 )P(C 2)

P(C21x) = 1 - P(C11x)

Interpreted literally, this type of solution does not classify the

event, but simply describes how earthquake-like versus

explosion-like the event is.

A second type of solution is an actual classification based on

a decision function 0(x). D takes scalar values and assigns a class

C to an event, according to the rule

- C1  when D(x) < 0

(2)
C C2  when 0(x) > 0

The equation O(x) = 0 describes an (M-1)-dimenslonal hypersurface

which divides discriminant space into "decision regions" "W, and

w2 (see Figure 17). Equation (2) thus tests whether x falls in

Rlor.W2, and so is equivalent to
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l(.D < 0)II 3

Figure 17. Schematic illustration of a decision surface in three-dimensional
discriminant space.

Af(D C 1) 2
-II

Dm0

Figure 18. Illustration of the error probabilities of a decision rule
in terms of the probability distributions of the decision
function D.

45

SYSTEMS. SCIENCE AND SOFrWARE



C C1  when x e ?1

A (3)
C C2  when x E R2

A classification C is useless without a measure of its

accuracy. Misclassification (or error) probabilities, p, and

PlI' serve this purpose. We define p, as the probability of

assigning an event to Class 2 (C = C 2 ) when it really came from

class 1 (C = C1). Similarly for pI. In terms of the

probability distributions of x and 0, the error probabilities are

P, =f dmx flxlC1 ) = dD f(oD c)ffWR2  0 (4)

PII =J. dmx f(xIC 2) = dD f(01C 2)

Figure 18 illustrates these difinitions. We note that for a given

function D(x), the univariate distribution f(DIC) is determined by
the multivariate distribution f(x C).

The decision approach involves deriving the decision function

that minimizes the error probabilities in some sense. The Bayes

criterion, for example, chooses 0(x) to minimize the expected "risk"

of misclassification defined by

P = P(C1) cl PI + P(C2) cll Pli. (5)

where P(C1 ) and P(C2 ) are prior probabilities and cI and cIl

are assigned costs of misclassification. For P(C1) = P(C2) =

1/2, cI = cH1, the decision function minimizing p becomes

D(x) = log f(xJC 2) - log f(xIC) . (6)

Equations (1), (4) and (6) provide theoretical solutions to

the discrimination problem when the distributions f(x C1 ) and

f(xIC 2 ) are known. In the seismic discrimination problem, as in

most scientific problems, the distributions are not known. A
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variety of approaches have been developed to handle this situation,

including nonparametric approaches which assume no knowledge of

f(xiC) (e.g., nearest neighbor methods) and parametric approaches

which require the estimation only of certain parameters of f(xIC),

such as its mean and variance. We will not attempt to review the

various methods here. The following sections describe a particular

k- approach we have developed which deals realistically with the

limited training sets available in the seismic discrimination

problem.

3.2 FISHER LINEAR DISCRIMINANT

In designing a statistical method for seismic discrimination,

we have kept the following considerations in mind:

t * The method should require as few assumptions about f(x C)
as possible.

. Only a limited number of parameters of f( IC) can be
estimated accurately from the training sets.

* The method should provide realistic estimates of the
error probabilities (p1 and PII) associated with the
decision function O().

9 The algorithm for obtaining D(x), Pl and P11 (and
posterior probabilities if they are desired) should be
computationally efficient and suitable for automation.

Within these restrictions, the method should find the best decision

function; i.e., the one with the smallest error probabilities.

A rather simple approach that can meet the above requirements

is linear discrimination, which assumes a decision function of the

form

D(x) -aTx + b , (7)

where b is a scalar and a is a vector containing M coefficients, or

weights. Each coefficient in a multiplies one of the discriminants

in x. The decision surface D(x) - 0 becomes a hyperplane in

M-space. The objective in this approach is to find the a and b that

minimize the error probabilities.
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From Equation (6) it is apparent that a linear discriminant

function does not provide an absolute minimum to p, and pl1
unless f(xIC1) and f(x IC2 ) have a particular functional form:

the two distributions must be Gaussian with equal covariance

matrices. However, the possible non-optimality of linear

discriminants is of little consequence if there are insufficient

training data to establish that the true distributions are

significantly non-Gaussian, or have unequal covariances. Even then,

* the best linear discriminant might perform satisfactorily.

It is important to realize that with f(x JC) unknown, one

cannot determine the error probabilities of any discriminant

function exactly, but can only obtain estimates inferred from the

training data sets. As a consequence of this, it may be impossible

to distinguish the error probabilities of linear discriminants from

* those of nonlinear discriminants. If existing or future training

sets prove adequate for making this distinction, straightforward

extensions of our method to nonlinear functions can be made.

Because p1 and pll must be estimated, the criterion that

D(x) minimize these probabilities does not lead to a direct

algorithm for obtaining the optimal a and b. Therefore, we define a

different criterion, one that has the effect of making the error

probabilities small, and which leads to a direct algorithm for a and

b. After a and b are obtained, p, and pl1 can be estimated to

see how good the resulting 0(x) actually is.

The criterion we use to obtain the optimal linear D(x) is

given by the Fisher linear discriminant. The Fisher discriminant

attempts to maximize the separation between the distributions

f(01C1) and f(DIC 2 ). Separation is defined in terms of the

means and variances of the distributions, as estimated from the

training data. For a given a and b, the training sets produce

sample values of 0 for each class, which we denote Di(1), i = 1,

N1, and 0i(2). i - 1, .., N2 :

=i(k) -A.i(k) 4' b (8)
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where k may be 1 or 2. We let m a (k)' respectively,

denote estimates of the mean and variance of f(DICk) obtained from

the samples Di(k)' Then the Fisher discriminant satisfies

2(mD2 -Dl)
2 D2 maximum

52 s2

SD(1) + SD(2)
,. (9)

D(2)- mD(1) 1

Figure 19 illustrates this measure of separation with a simple

example.

-' To express v in terms of a, we let the vector m(k) be an

estimate for the mean of f(xICk) and the matrix S(k) be an

estimate for the covariance matrix of f(xICk). For example,

M(k) - Ii (k)

(10

S(k) - (xi(k) T-)(-Ii(k)

Fancier estimates can also be used. We then rave

mD(k) AT(k) + b

(11)

S2 aT S
SD(k) - a(k) a

so Equation (9) becomes (Gnanadesikan, 1977, p. 83; Young and

Calvert, 1974, Equation (4.86))
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Figure 19. Illustration in two-dimensions of the separation of two classes
of training data by a linear discriminant.
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2 (aTam)T maximum
a Sa

(12)

aT am=

where

~Al_ = !(2l 1(11

(13)

S e S(1 ) + S(2) •

The solution to Equation (12) is (Gnanadeslkan, 1977, p. 84; Young
and Calvert, Equation (4.93))

an 4._I1(14)alS l All 14
• -- am s-ZAm

It is clear that v2 . maximum Uioes n't constrain b. The

optimal choice of b is difficult to define without making
assumptions about the functional form of f(OIC). The following
value of b is a reasonable choice that tends to make p, and pII

equal (Young and Calvert, equation (4.95))

T T
b "SD() A. !2) so(2) A (1) (15)

SD(1) + sD(2)

where SO(k) is given by Equation (11) and a by Equation (14).
When sD(1) equals sD(2). b reduces to the constant which may be
derived from the assumption that the two populations have equal

covariance matrices (Anderson, 1958, Equation (6.4.5), p. 134).

3.3 FEATURE EXTRACTION BY DAMPING

S(k) (k = 1 or 2) is an M by M matrix which estimates the
true covariance matrix of f(xjCk). Its accuracy depends on the
relative sizes of M (the dimension of x) and Nk (the number of
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samples of x in the training set). It is desirable to have

N k H. If Nk is too small, the inaccuracy of Sk) causes
Sk and thus a, to be unstable. In other words, a is weakly

constrained by training sets with too few samples. When this

occurs, D(x) will perform well in classifying the training events

but may perform poorly on new events. With a good algorithm for

estimating p, and pII (e.g., jackknifing), this will be

reflected in large estimates of these error rates.

The usual solution to this problem is feature extraction: a

statistical procedure for transforming x to a vector x' of smaller

dimension H'. (It is assumed that feature selection was done in

creating x such that all the features in x are believed to be

potentially good discriminants.) Given H', the desired number of

new features, an ideal feature extractor would find the H'

combinations of the original discriminants that could produce the

best discriminant function D(x'). It is very difficult, if not

impossible, to do this since error probabilities cannot be estimated

until after feature extraction has been performed.

A commonly applied method of feature extracation is the

principal component method. In this method, the pooled covariance

matrix of x (defined by Equations (10) and (13)) is decomposed into

its eigenvectors and eigenvalues:

S - UAUT (16)

where the columns of U are the orthonormal eigenvectors of S andA

is a diagonal matrix containing the eigenvalues of S. The principal

component method takes as the new feature vector

X' - U Tx (17)

where UL Is an M by H' matrix containing the elgenvectors

associated with the M' largest eigenvalues. There is no guarantee

that x' contains M' good discriminants since the projection of am
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onto UL  is not considered. (If UT am were by misfortuneL ~L
zero, x' would be almost useless for discrimination.) Nevertheless,

the principal component method has proved satisfactory in many

applications (Tjostheim, 1981).

We have designed a variation on the principal component method

which is more convenient and which promises to perform better

because it takes UTam into account. Feature extraction as such is

not done. Instead, a damping term is added to S to form a new

covariance estimate S(e):

S(e) = S + 81
(18)

- S(l) + S(2) +el

where e is a scalar damping parameter and I is the unit matrix.

SCe = 0) = S, the undamped matrix used in the last subsection. We

then obtain a by replacing S with S(e):

a(e) = (19)
am S(e) am

The damping of S is equivalent to adding a to each of its

eigenvalues. Denoting the eigenvalues as x and the associated

eigenvectors (columns of U) as gj, S(e) takes the form

M
aT(e) X + (20)

J =1

Thus e diminishes the contribution of u to a when is small,

which is consistent with principal component feature extraction.
However, Rj will still contribute to a if 1i Tam is

sufficiently large; i.e., if the means of the two event classes

differ significantly in the.uj direction.
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A refinement to both the principal component method and the

damping method is achieved by using the correlation matrix R in the

analysis instead of S. R is a scaled version of S:

R - W-1 /2 SW-1/2  (21)

where W is a diagonal matrix containing the diagonal elements of
S(Wij - Sij lij, implying Rii " 1). The eigenvalues of R

are independent of the units chosen for x; so the individual

discriminants in x are normalized in a natural way. For the damping

method, this refinement corresponds to redefining S(e) as

S() = S + eW . (22)

It is not obvious how to determine the optimal value of e;

i.e., the value that results in the smallest error rates for D(x).

One could base a choice of e on the expected uncertainties in S

inferred under the hypothesis of a particular distribution

f(xICk). A trail-and-error approach might be more effective,

however; namely, one could compute 0(x) for several 9's and select

the one yielding the smallest estimated error rates.

Examples of damped discriminant weights a(e) are shown in

Figures 20 and 21. The data used in these examples are VFM

magnitudes determined at two SRO stations: KAAO (Kabul,

Afghanistan) in the first example (Figure 20) and CHTO (Chiang Mai,

Thailand) in the second example. The training events are the AI

events used in the Discrimination Experiment. The set of training

events is not identical in the two examples, mainly because

teleseismic events were excluded from the KAAO training set.

The feature vector x in each example has dimension 40 and

contains mb(f) values at 40 frequencies between 0.4 and 5.0 Hz.

From these 40 data, mb(f) at two frequencies (one high and one

low) were selected as features for the Discrimination Experiment.

The purpose of the examples shown here is to see what the

statistical analysis determines as the optimal combination of the
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Figure 20. Training set means and five sets of feature weights determined
fromt VFM data at station KAAO.
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Figure 21. Training set means and five sets of feature weights determined
from VFM data at station CHTO.
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entire set of 40 mb's. We point out that the Discrimination

Experiment showed that the VFM discriminant from KAAO performed very

well in classifying AI events, while the CHTO data performed poorly.

In each of Figures 20 and 21, the top frame shows the sample

means of the explosion and earthquake training data (E!(1 ) and

m(2 from Section 3.2). The 40 components of each vector mean are

plotted as a curve against a log frequency scale, and thus are

displayed like a Fourier spectrum. We note that before doing the

statistical analysis, the data were converted to a relative

magnitude amb(f) by removing the average value of each feature

vector (the average over frequency). Comparing Figures 20 and 21,

we see that the separation between the explosion and earthquake

means is much larger at KAAO than CHTO.

In each example, discriminant weights were computed for five

values of the damping parameter e, using the correlation damping

scheme (Equation 22). The five sets of weights are plotted as a

function of frequency in the bottom frame of each figure. The

weights obtained with the smallest a are plotted at the top of the

frame and those with the largest • (most damping) at the bottom.

The zero line is drawn through each weight-versus-frequency curve,

but the vertical scale for each curve is arbitrary and not shown.

Labeling each set of weights in Figures 20 and 21 is the value

the weights give to the separation parameter v (defined in Equation

12). This measures how well the discriminant plane D(x) = 0

separates the two classes of training data. For our purposes here,

v > 2 implies reasonably good separation. Comparing the two

stations, we see that the KAAO data separate the event classes much

better than the CHTO data.

The separation parameter decreases as the damping parameter

increases. This does not mean, however, that the lowest damping

provides the best discriminant function since good separation of

training events does not imply low error rates on new events. In

these examples where the number of training events is quite small

compared to the number of features, the weights for small • are

probably unstable; so the heavily damped weights are likely to

perform better on new events.

57

sysrEms, SCIENCE AND SOFwAnE



!S

In both Figures 20 and 21, one can see that increasing the

damping has the effect of smoothing the weights over frequency.

Under-damped weights oscillate rapidly and attempt to use spurious

wiggles in the mb(f) spectra as a basis for discrimination. The

weights obtained with the most damping extract a very robust feature

from the data, particularly in the KAAO example (Figure 20). They

p essentially subtract the average mb below about I Hz from an

average mb over one or more high frequency bands - the actual

bands varying from station to station. This is consistent with what

we learned in the Discrimination Experiment.

3.4 JACKKNIFING TO OBTAIN ERROR ESTIMATES

When the probability distributions of x and D(x) are unknown,

the error rates p, and p11 cannot be computed from Equation (4);

they must be estimated empirically from the training data xi k).

Estimates of p, and p11  are easily obtained by counting the

fraction of training events misclassified by D(x); that is, the

events that make 0i(1) > 0 or Di(2) < 0 (see Equation 8).

However, if D is derived from all of the training data, and thus

optimized for these data, the error estimates may be very biased

downward. This is particularly true when the dimensionality of x is

high compared to the sample sizes.

A powerful method that removes much of this training set bias

is the "leave-one-out," or "jackknife," method. Mosteller and Tukey

(1977) provide a good discussion of jackknifing with illustrative

examples. A simple application of jackknifing computes a and b N

times (N z NI + N2) leaving each training event out in turn.

The discriminant function obtained each time is applied to the

left-out event to obtain a sample, Di(k)* The star

distinguishes this from the sample Di(k) obtained with the

complete discriminant function. The idea behind jackknifing is that

the 0i(k) are a more likely set of samples of f(DCk) than

are the Di(k)" The number of Di(k) having the wrong sign

thus produce less biased estimates of p, and pII. We
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denote the jackknifed estimates as Pl and P. The
variances of p1  and pl1  are a function of the training

sample sizes, being roughly inversely proportional to N, and

N2. More accurate error estimates might be obtaied with more

elaborate jackknifing procedures that yield more than N samples of

D* (e.g., leave-two-out).

The jackknifed samples Di(k) can be used to estimate the

complete probability distributions f(DJC 1 ) and f(DIC 2) An

estimate of f(DICk) may be obtained by fitting a smooth curve to

the cumulative histograms of the 0. or by Parzen'' s

approximation. From estimates of the distributions, one can derive

estimates of the Bayes posterior probabilities using D in place of x

in Equation (1).

A drawback of the jackknife method is the considerable amount

of computation it involves. Fortunately, the computations required

by the Fisher discriminant are rather modest compared to many

alternate approaches; so compuational considerations might not

matter if the sample sizes and dimensionality are not too large. In

addition, we have devised efficient algorithms for finding inverses

of the perturbed covariance matrices that occur in the leave-one-out

method. These algorithms would reduce the jackknifing computation

by a factor of order N. ie algorithms do not seem to be applicable

to the damping scheme involving the correlation matrix (Equation

22). They are, however, applicable to the covariance damping scheme

(Equation 18).

3.5 NONLINEAR DISCRIMINANTS

If we discover that the damped Fisher discriminant performs
unsatisfactorily for automatic seismic discrimination, a particular

nonlinear discriminant can be implemented with only modest

modification of the algorithm outlined above. The decision function

is quadratic in x:
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D(x) (x - m ) (Sit) + e0 i)- (x - mw)
-(1))-1 23

- (x - M(2) (2) + 2 I) (x - 2)) (23)

+ log [det (S(1) + 01 I)/det (S(2 ) + 82 I)]

This is the Bayes decision function (Equation 6) implied by Gaussian

f(xC 1 ) and f(xIC2 ), but with sample means and damped sample

covariances substituted for the true means and covariances of the

distributions. Even though we did not optimize any free

coefficients (like a) to derive the quadratic discriminant, it turns

out that the Fisher discriminant is a special case of Equation

(23). When S(1 ) = S(2) , 81 = e2, D(x) reduces to the Fisher

discriminant, but with a different value of b from that in Equation

(15). In this sense, D(x) in Equation (23) might be considered more

optimal than the Fisher discriminant. However, this is not

necessarily the case since only finite training sets are available

for estimating the covariance matrices.

The algorithm for implementing this discriminant would not

differ very much from the Fisher discriminant algorithm. The same

sample means and covariance matrices are involved, and are just

combined differently to obtain D(x). The jackknifing procedure

would proceed in the same way, including the shortcut algorithm we

mentioned for inverting perturbed covariance matrices, if it is

needed. The damping parameters 01 and 02 in Equation (23)

stabilize D(x) in the same way that e stabilizes the Fisher

discriminant. Like e, they can be optimized by trial and error or

selected on theoretical grounds.

Finally, we mention a variation on the linear discrimination

approach which can be used to optimize, in a limited way, general

nonlinear discriminants. The procedure, described by Young and

Calvert (1974), is to augment the feature vector x with nonlinear

functions of its original elements. An example illustrates the
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basic idea. Let x' be an augmented feature vector containing

squares and cross products of the elements of x:

2 2

X, c is x29 "s xM' 2  ..., 2V X)  ( 24)

Then the linear discriminant

D(x') - aTx ' + b (25)

becomes a general quadratic function of the original x. The Fisher
p linear discriminant algorithm applied to x' would, in effect,

optimize a quadratic decision function. The danger in this

approach, of course, is that augmentation increases the dimension of

the feature vector which might cause stability problems.

Given limited training sets, it may be more beneficial to
treat nonlinear functions of the data in the feature selection

phase. If a nonlinear function of a datum makes its distributions
more Gaussian-like (e.g., the z-statistic), its use as a feature in

x will improve the performance of both the Fisher discriminant and
the quadratic discriminant function in Equation (23).

3.6 REGIONALIZATION OF DISCRIMINANTS

Statistical discrimination methods assume that the training
data within each event class are identically distributed as

f(xICk) (k = 1 or 2), and that a new feature vector x to be

classified has one of these two distributions. The error

probabilities p, and pll reflect an average performance on

events whose data have these distributions. These assumptions bear

on two important aspects of the seismic discrimination problem.

First, if events from different source regions are analyzed

together, then the method must treat the regional variations in the
discriminants due to geology as a random process that disperses
f(xICk). This always degrades average error rates and may, in

fact, be a bad model. Thus, it is clearly necessary to divide the
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total data set into subsets appropriate to particular source

regions. In this case, each subset is treated independently using
the machinery discussed in the previous sections. Our approach is,
therefore, to set up a regionalized classification for events based
on geophysical province and to use real or theoretically produced
event training sets from such regions as independent populations.

k- For example, we would classify all trench located earthquakes as a
separate population of events. Similarly, we would treat events
occurring within plate interiors as a separate population, and
events from rift zones or ridges as a third population, and so on.

9 With this regional subsetting procedure, we would anticipate far
less dispersion in the individual populations than would be the case
if all events were classed together in one population, and,
consequently, much more meaningful estimates of error probabilities
and more precise and accurate event classifications.

3.7 MEASUREMENT ERROR

The second feature of the actual data that affects our use of

the previously discussed multivariate analysis is the errors and
uncertainties in the observations. These errors are dependent on
the receiver network distribution relative to the source location,

the noise levels at the receivers and the event magnitude itself.
Estimates of these errors and uncertainties can be made; and we
have, for example, taken great care in obtaining noise related
uncertainty estimates in our automated measurement of discrimination
variables. The errors are not uniform in size with respect to event
magnitude and location, however, and this fact requires that we
either separate the populations into magnitude ranges and regions
where the data measurement uncertainties are nearly uniform, or
include the nonuniform data uncertainties in the multivariate
discrimination procedures from the beginning. In the former case,
the method outlined in the previous sections can be applied

*directly. For the latter treatment, where nonuniform error
estimates are to be treated directly, the procedure formulated
earlier would need to be generalized.
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4. APPLICATION OF THE FISHER DISCRIMINANT TO SPECTRAL RATIO
(VFM) MEASUREMENTS

In Chapter 3, a prescription for classifying single seismogram

feature vectors was developed. The prescription was very simple,

consisting of simply forming the dot product of the feature vector

with a set of weights and then adding a constant, b, to yield the

scalar discriminant which we call d. The weight vector, a, and the

constant, b, are obtained from analysis of training data which, of

course, must contain samples from the two populations. Except for a

scale factor, the weight vector, a, is just that first derived by

Fisher and is found by multiplying the inverse of the pooled

variance-covariance matrix by the vector difference in the means of

the two populations (see Equation 14). For the constant, b, we have

followed the suggestion of Young and Calvert (see Equation 15)

which, it may be shown, reduces to the classical Fisher result in

the case where the covariance matrices of the earthquake population

and explosion population are equal. In this chapter, we discuss the

results obtained when this rule is applied to the variable frequency

magnitude features calculated for some of the Area of Interest seis-

mograms. Only three stations (KAAO, RKON, and ILPA) are mentioned,

the purpose being to describe the method by actual illustration, in

order to exemplify the procedures whereby a large set of feature

weights have been obtained for incorporation into the automatic

discrimination package.

It may be recalled that we pointed out several theoretical

weaknesses to the application of the Fisher linear discriminant for

earthquake explosion discrimination. One possible weakness is that

the Fisher linear discriminant does not necessary minimize the PI

and P11 misclassification probabilities. Although this discrimi-

nant does minimize those probabilities in the case where the two

populations have multivariate Gaussian probability density functions

with equal covariance matrices, this is almost surely not the case

for earthquake and explosion seismograms. Secondly, the constant,

b, which essentially defines the decision rule is open to question,
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for there seems to be little theoretical guidance on how the

decision rule should be obtained for data such as we deal with.
Finally, there is the problem of attaching confidence limits to

parameters estimated from the training data. There exist, of

course, multidimensional equivalents of the t statistic of theX2

statistic, etc., but, in view of the demonstrable difficulties in
1;supporting the Gaussian assumption about our data, we are wary of

applying the ordinary tests of significance to the quantities which
we estimate from the training data. Not only are the sample sizes

pitifully small, but also the training data are known to have

* inherent biases in such respects as propagation path, magnitude

range, etc. Thus, any tests of significance based on the Gaussian
f-U, assumption would be highly suspect.

To examine these sorts of questions, which are really

* questions about the robustness of the statistical methods which have

been used, the analysis technique known as jackknifing (or the
leave-one-out method) has been applied in conjunction with the work

on the Fisher linear discriminant. The idea behind jackknifing is
trivially simple. Given training data from each of the two popula-
tions, one simply pretends that one of the datums (feature vectors)
was not available for the analysis. Under the fiction that the
diminished training data is the only data available, the

discrimination function, a, (weights vector) and decision constant,
b, are evaluated using the methods described in Chapter 3. This

rule is then applied to the single datum which was left out of the

analysis. This results, for the ignored feature vector, a classifi-

cation scalar, d*. This single scalar is saved and tagged with the

identifier of the datum which was left out. The previously ignored

datum is then put back into the training set, another datum is

dropped from consideration, and the analysis repeated until one has

cycled through the whole set of training data. If there are n data

vectors available, this then requires n evaluations of the Fisher
linear discriminant.
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A jackknife analysi s has several attractive features.
Probably the principal one is that it leads to misclassification
probabilities which more clearly reflect the operational environment
in which seismic discrimination must be carried out. It mimics the

situation where the one freezes the training data, derives and
algorithm, and then applies the algorithm to new measurements. We
find, in fact, that misclassification probabilities obtained through

the jackknifing method are more pessimistic, (that is, discrimina-
tion more error-prone) than are those which one would infer if all
the training data were processed at once. A further desirable

feature is that plots of the scalar discriminant d* obtained by the
jackknifing graphically illustrate the tradeoff which is obtained
when the decision rule, that is, the constant, b, is altered.
Jackknifing is also a clear way of demonstrating the existence of
outliers in the data, anomalous seismograms which may unduly bias
the results. This is a phenomenon sometimes referred to in

univariate statistics as a leverage point. In this respect,

jackknifing fits neatly into the philosophical approach of
Gnanadesikan (1977, p. 196), "The main function of statistical data
analysis is to extricate and explicate the informational content of
a body of data."

A major objection to jackknifing in the past seems to have
been the computational expense entailed by the multiplicity of

statistical calculations. This has been greatly exaggerated. For

example, 60 feature vectors, each of dimension 40, can be processed
in a minute or so on the UNIVAC 1100/81 computer, and the bulk of
the AI VF!4 data set was processed in this project in a few man weeks
-- and most of this time was taken up with data base preparation and
not the statistical calculations themselves. Compared to the effort
required first to organize the waveform data base and to edit it in
preparation for feature extraction, the linear discriminant analysis
and the jackknife calculation is short and simple. It presents the

analyst with a wealth of information from the training data -- more
data than can easily be absorbed and synthesized.
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4.1 DESCRIPTION OF PROGRAM ?4VSD

A block diagram of the program which was used to estimate the
station dependent feature weights, and to estimate the misclassifi-
cation probabilities by jackknifing is shown in Figure 22. Because
the Area of Interest variable frequency magnitude data were most
accessible to us, these were the data used in the analyses. The

method, of course, is applicable to a feature vector of arbitrary
dimension, and further work in automatic discrimination will entail
the expansion of this calculation to include other discriminants.

F The first stage in the analysis is a data preparation step
(see Figure 23). This is the only step which needs to be altered in
order to include other discriminant data sets. The procedure begins

*by reading a set of execution parameters. This step continues in
t the second box by reading the set of feature vectors which are

available for a single seismic station. This, of course, must

include a selection of earthquake, as well as explosion, seismogram
readings. In our application, we have worked with the 40 variable
frequency magnitudes described by Savino, et al. (1981a) as
contained on the widely distributed data tape. Generally, only a
subset of all the available data is processed at a time. The data
is typically partitioned, for example, into different magnitude
ranges, or into different source regions, or into different distance
ranges. The sorted list of feature vectors is then rearranged. For

the case of the VFM discriminant where no magnitude was occasionally

reported for some frequencies at which there were holes in the
spectrum, any missing data were linearly interpolated.

After the raw data is acquired, the statistical analysis of
the entire training set is performed. This breaks down into two
major functions - the mean and covariance matrix calculations (see
Figure 24) and the linear discriminant estimation (see Figure 25).
The statistical procedure begins by computing new reference values
based on selected events and then subtracts out from the VFM
magnitudes for each event, the mean body wave magnitude. Thus, if

one was to average the spectral magnitudes for each separate event,
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PROGRAM MYSO

DATA PREPARATION

S STATISTICS FOR ALL DATA

2

E1GENVECTOR(S)

EIGEN VALUE(S)

3

JACKKNIFE

4

PRESENT RESULTS

Figure 22. There are five steps to the procedure which estimates feature
weights and misclassification probabilities.
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START
MVSO

* READ NAMEUIST

READ MARS DATA FROM FILE

CALL READF

* DETAILED SUMMARY

OP ALL EVENTS
CALL DSSUMM

SORT AND PACK EVENTS

CALL OSCRN

FIX MISSING DATA

CALL PIXMD

Figure 23. Data preparation is step one in program MVSD.
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COMPUTE NEW REFERENCE VALUES

CALL NEWREF

t

SUBTRACT REFERENCE MB 4

FROM EACH DATA VALUE

CALL REFSUB

COMPUTE COVARIANCE MATRIX

AND MEANS VECTOR

CALL MNSO

ADD UP TOTAL MEANS

AND VARIANCES

CALL COMBO

7

Figure 24. Statistical calculation on all training data for both event
classes is step two.
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, -[
40

FIND EIGENVECTORS

AND EIGENVALUES

CALL EIOEN

COMPUTE NUMBER

OF DEGREES OF FREEDOM

CALL COMPOF

TEST EIGENVECTORS

AND EIGENVALUES

CALL ETEST

FIND DISCRIMINANT COEFFECIENTS

CALL FINOAS

Figure 25. Eigenvector decomposition of the two covariance matrices is
used to stabilize the feature weights.
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the average of the modified magnitudes would be zero. Taking all

feature vectors together, the mean vectors and the covariance

matrices are found in the usual way (see Equation 10). From these,

the total mean and variances are found, and, finally, the combined

correlation matrix and the standard deviation.

Having found mean vectors and covariance matrices for the set

of training data in each population, the weight vector, a, which

best separates the two populations, and the constant, b, which forms

the decision rule, are then calculated (Figure 25). To do this, we

first compute the elgenvalues and the etgenvectors of the combined

covariance matrix using singluar value decomposition. The number of

degrees of freedom of the linear system is then found, and the

matrix of the eigenvectors is tested for orthonormality. Further

tests are applied to the nor and to the trace of the matrix, for

these tests are required to ensure the matrix is not singular.

Then, the discrimination coefficents (feature weights) are found,

and at this stage the parameter e (the damping parameter) is added

in order to suppress the small eigenvalues of the variance covar-

lance matrix. From the weights vector and the decision constant, b,

the mean and the standard deviation of the scalar discriminant, d,

for the entire data set are found.

The program next enters the inner jackknifing loop (see

Figure 26) which is essentially a repeat of step 2, the statistical

calculation, and step 3, the singular value decomposition and

discriminant calculation, but for the diminished set of training

data which results when each measurement vector in turn is left out

of the analysis. Finally, the results are summarized, stored on a

printed file, and partially printed on the line printer (Figure 27).

4.2 KAAO RESULTS

The purpose of this, and the two succeeding sections is to

illustrate the practical application of the Fisher discriminant and

jackknifing to the variable frequency magnitude data from the Area

of Interest experiment. Although practically the entire VFM data
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UPDATE MEAN VECTOR

AND COVARIANCE MATRIX
CALL OMIT

ADO UP TOTAL MEANS

AND VARIANCES

. CALL COM80

COMPUTE EIGENVECTORS

AND EIGENVALUES

CALL EIGEN

COMPUTE NUMBER

OP OIGREES OF FREEDOM

CALL COMPOF

FIND OISCRIMINANT COFFICENTS

CALL FINOAS

DO STATISTICS ON JACXXNIFlNG

CALL X SAT

RECREATE ORIGINAL ARRAYS

INVERSE OF OM

CALL RSTOPRE

Figure 26. Jackknifing (the leave-one-out method) is used to estimate mis-
classification probabilities for the training data.
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SORT VECTORS D" AND D-ALL

(PRINT ACCORDING TO D*)

CALL SORT)

EXIT

Figure 2?. Jackknife results are printed and weights vectors saved to use
in the Automatic Discrimination Program at SDAC.
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set has been analyzed, we have extracted from those results what

seem to be three representative examples -- results obtained for

Kabul (KAAO), Redlake, Ontario (RKON), and the Iranian array

(ILPA). Not only are the linear discriminant results and the

jackknife results presented, but we also tie these results to those

obtained by application of the bivariate discrimination procedure

used previously by Savino. The comparison with Savino's earlier

results shows that the importance of the programming error

discovered by Rivers (1981) has been somewhat overestimated. Rivers

found that, for small magnitude events, there were demonstrable

mistakes in the extrapolation of the spectral magnitude to low

frequencies. What we find In the analysis reported here, is that

when no smoothing and extrapolation is dcne, that is, when all VFM

magnitudes are taken exactly as measured, there is the same clear

separation of the explosion and earthquake populations. This

re-analysis of the VFM data set does not, of course, address the

controversial issue of the physical basis for this discriminant.
That is, whether it reflects a bias in the data set, whether it is a

consequence of attenuation along the various propagation paths, or

whether it truly arises right at the source.

The result of pilot calculations for the KAAO VFM data were

presented in Chapter 3 (see Figure 20). The principal purpose

behind those calculations was to explore the range of damping

parameter, e, which provides acceptable tradeoff between resolution

and variance. It is a general observation that covariance matrices

calculated for highly correlated random variables have a rank much

less than the dimension (In this case, 40) of the matrix so that

when its inverse is found, in order to estimate the set of weights,

a (see Equation 14), the 40 separate weight factors may be highly

erratic. The principal components analysis of the Kabul variance-

covariance matrix, performed by singular value decomposition, shows

that between 10 percent and 50 percent of the elgenvectors contained

most of the variance In the data. On the basis of this observation,

the entire VFM data set was processed using three values for the

damping parameter. These are referenced In the subsequent figures
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by the parameter K which takes the values 1, 10, or 30 in the three
cases. Since the damping parameter is a rather abstract notion, we
also tabulate, in each of the figures, the numbers of degrees of
freedom (NOF) which apply in the three cases. These are roughly

K equivalent to the number of free parameters out of the 40 possible
which were retained in the inversion of the variance covariance
matrix. The value of NOF, when rounded to the nearest integer, is
roughly equivalent to the dimension of the hyperplane which cleaves
the data into the two populations. For bivariate discrimination,
NDF would equal 2.

Figure 28 presents the results obtained from the linear

discriminant analysis of 29 events (see Table 1) in the Kabul VFM
data set. There are 10 explosions (Type -1) and 19 earthquakes
(Type 1) . As was mentioned in the discussion of Figure 24, the
first step in the analysis is to subtract the mean magnitude from
each 40 element VFM data vector. This gives 29 relative VFM

vectors. Then, at each of the 40 frequencies, the sample mean and

the sample standard deviation is calculated for each of the two

populations. This results in an "average" earthquake spectrum and

an "average" explosion spectrum, with accompanying relative mb
limits for the two classes which encompass 95 percent of the

observations. Plots of the upper and lower limits, drawn around the

average, are shown at the bottom of Figure 28. This figure
indicates that the explosion data are relatively richer in high
frequencies than are the earthquake data. We recall that if each of

these bands is averaged across frequency, each would have a relative

m b of zero.

This initial step of subtracting the mean magnitude from each
spectrum is controversial. The result may be expected to depend on

pthe range of frequencies spanned. It takes no account of the
frequency dependent signal-to-noise ratio, a particularly severe
problem for weak events. Most importantly, it does not account for
the fact that the shape of both earthquake and explosion spectrums

t vary with the moment (or size) of the event. Graphically, one can
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KA002 01ISCRIMINRNT WEIGHTS
ORTE-05/05/'81 TIME-I!:5:Li 144
K- 30 NOF- '.3

K- I NOF- 16.2

CUISS MVI~NS -Q-?O

ft EQ

Figure 28. A plot of the feature weights vectors for the VFI4 discriminant
at KAAO (three top panels) shows that as the number of degrees
of freedom (NDF) increases, the weights become more "noisy".

* The trend in the weights clearly reflects the differences in
the mean spectra for the two classes of events (bottom).
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understand the mean magnitude scaling by imagining a bivariate plot
of spectral amplitudes, such as Figure 36 shown later. Removing the
mean from each spectrum is tantamount to assuming that the data are
clustered in ellipsoids with the major axis of each population
meeting the coordinate axes at a 45 degree angle.

For three values of the damping parameter K, the linear
discriminant analysis produces the three weights vectors shown in
the top three panels of Figure 28. At the top of this figure, we
see that with the damping parameter of 30, there are approximately
4.3 degrees of freedom for this data set whereas, when the damping

*parameter is 1, there are over 16 equivalent degrees of freedom. It
is observed, as was pointed out in the discussion of the pilot
calculation in Chapter 3, that when the number of degrees of freedom
increases, the progression of weights becomes more and more erratic
with frequency. Although the pattern of weight amplitudes for the K

=1 result is difficult to perceive, for K -10 and K = 30, it is
obvious that the set of weights tends to be positive at low
frequencies and negative at high frequencies. This is, of course,
just the observation upon wnicn Savino founded his bivariate
discrimination criterion.

For each of tne three choices of damping parameter, the

jackknife calculation was performed for all 29 events in the data
set. The result of this calculation is presented in Figure 29.
Recall that jackknifing consists of deleting, one at a time, each of
tne events from the data set and recalculating the best linear
discriminant; that is, the set of weight vectors which best separ-
ates the residual members in the two populations. Thus, for each
choice of the damping parameter, there were 29 sets of weight
vectors calculated, but we have not displayed those here. What we
show instead is the result of taking those 29 weight vectors and
then using them to classify the single datum which was left out of
the linear discrimiinant analysis. The results are presented as
univariate plots of the scalar discriminant d* for all 29 events.
In Figure 29 we represent the explosion events by open circles and
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the earthquake events by crosses. In order to display graphically

the clustering of the population values of d* and their spread, we

have superimposed on the univariate plots simple Gaussian functions

(the solid line denotes the explosion function, and the dash line

the earthquake function) calculated from the usual formula by

inserting the mean and standard deviation of the two sets of d*

values. There is, of course, no reason to presuppose that the

jackknifed values of d* do represent samples from the Gaussian

population. If they did, however, and if the earthquake and

explosion data sets had equal variances, then the two Gaussian plots

would appear to be centered at -0.5 and +0.5 for the earthquakes and

explosions respectively, and have equal amplitudes. In this case,

for example, we note that for all three values of the damping

parameter, the earthquake Gaussian is of somewhat lower amplitude

than the explosion Gaussian which is a reflection of the greater

spread in the values of d* obtained by jackknifing the earthquake

data.

Not only does the jackknife calculation for each value of the

damping parameter yield 29 slightly different weight vectors, it

also yields 29 different values for the decision constant, b. The

heuristic basis for our definition of this constant was mentioned

earlier. It is likely that a different definition of b would lead

to somewhat different results for the values of d* shown in the

tnree panels of this figure. Just as the choice of b amounts to

expressing a rule for classification of the linear discriminant, so,

in Figure 29, one may select a critical value of d*, say dc, to

perform classification. Adopting the rule that an event is

classified as an explosion if d* is negative, and classified as an

earthquake if d* is positive, i.e., dc a 0, then the misclass-

ified events are obtained as shown in the top part of each panel.

Note that the set of misclassified events depends upon the choice of

the damping parameter. When the damping paraiieter is large, only a

few principal components are retained in the covariance matrix.

This leads to a rather smooth set of weights and results in only two

misclassifed events for this data set. For smaller values of the
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damping parameter, there are a larger number of degrees of freedom,

and more events are misclassified. Note, for example, that event 53

is correctly classifed for K = 30 and incorrectly classified for the

other two cases, whereas event 272 is correctly classified for 16

degrees of freedom, but misclassified for 7.6 and 4.3.

The direct correlation between degrees of freedom and

misclassified events obtained in the jackknife test, is just

contrary to the result one obtains when all the data are lumped

together. Since higher degrees of freedom amounts to a higher

dimension in the discrimination hyperplane, the number of misclassi-

fied events decreases as the degrees of freedom increases.

Although we do not wish to attach too much importance to the

fit of Gaussian dispersion functions about the two sets of d*

values, we note that the value of d* at which the solid curve and
dotted curve cross depends upon the value of the damping parameter.

For the damping parameter of 30, the intersection point occurs

nearly at d* = 0; whereas for K - I it is approximately d* a 0.2.

This illustrates the phenomenon discussed in the theoretical

discussion that there is there is no a priori reason why the Fisher

linear discriminant yields equal misclassification probablilities

for the two populations.

The principal purpose behind the jackknife study is to provide

more realistic estimates of misclassification probabilities than are

obtained when the data are treated in toto, and to provide a means

for quickly identifying anomalous seismograms. We find, for

example, that in this study, events 22, 53, 266, and 272 give

ambiguous results, for both d and d* are close to zero. Small

changes in the definition of the constant, b, or alternatively of

the decision value dc could flop these events into one group or

another. Different choices of the damping parameter have the same

effect.

Linear discriminate analysis with jackknifing completely

supports the conclusion of Savino, et al. (1980a) that the VFM

method (spectral ratios) is an effective way of separating the

explosion seismograms from the earthquake seismograms in the Kabul
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Ta

data set. This is illustrated in Figure 30 (reproduced from Savino,

et al.) which shows the results of the bivariate discriminant

analyses of the Kabul data. It can be seen that earthquake 272, and

explosions 22 and 53, all indicated by circles, fall on the inner

boundaries of their respective bivariate populations, and that

explosion 266, which jackknifing missed only for the large degree of

freedom case, is also more earthquake like than the seven other

correctly classified explosions. Note also on this figure that

*earthquake 159 lies very near the misclassified earthquake event

272. Table 1 shows that this earthquake, although correctly

classified, would have a rather large uncertainty attached to its

classification.

The difference between the methodology of Savino and that used

here should be mentioned again. The basic data for the two

calculations was identical, and that consisted of the spectral

magnitude at 40 different frequencies spanning the range 0.5 Hz to

5.0 Hz for 29 events. Our analysis has taken all 40 spectral

estimates for the set of events and found the linear weighting of

the relative spectral magnitudes which forms the best separation

into two groups. There was an arbitrary parameter in this calcu-

lation, the damping parameter, which significantly altered the

aetails of the weight vector, but only slightly altered the final

event classifications. This was most clearly shown in the jackknife

experiment. Savino, on the other hand, selected just two frequency

bands within the range 0.5 Hz to 5.0 Hz. Across each of the fre-

quency bands, a high order polynomial was fitted to the various

spectral amplitudes. This interpolating polynomial was then

evaluated at a specific frequency to yield the VFM magnitude

presented in the bivariate plots.

It does not take much artistic skill to be able to draw a

straight line on Figure 30 which totally separates the earthquake

population from the explosion popblation. How is it, then, that the

linear discrimination analysis makes mistakes, thus appearing to

perform less satisfactorily. The answer is, in fact, that it does
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not. This may be seen by the data presented in by Table 1. Column

two in tnis table gives event numbers. For each event, column

seven, labeled d(all), gives the value of the scalar discriminant

obtained when all the data is processed at once using a damping

parameter of 10. Next to the d(all) column is the column labeled
"original errors" which tells those events which are misclassified

under this criterion. It can be seen that this column is empty. On

the other hand, when the data are jackknifed, a slightly different

set of scalar discriminant values, our d*, is obtained as shown in

column dstar. Now we discover that there have been three

misclassified events on the jackknife calculation.

For classifying future events, one wants to take the largest

possible training set, and it is the set of weights shown on the K -

10 panel of Figure 28 which are included in the automatic discrimin-

ation program. When these weights are applied to the 29 events in

the test set, we obtain the values of d(all) shown in Table 1.

These values of d(all) roughly correspond I- the perpendicular

distance between the event data vector and the separation plane.

When reduced to two dimensions, d(all) correlates with distances

measured on the bivariate plot shown in Figure 30. For example, the

most negative value of d(all) was obtained for event 14, and the

most positive value was obtained for earthquake 162. If we look at

the position of these two events on Figure 30, we see that event 162

is well on the outer boundary of the earthquake population. (Event

14, on the other hand, is more toward the central zone of the

explosion population.)

4.3 RKON RESULTS

The RKON data set consists of the 54 events listed in

Table 2. The relative mb plots shown at the bottom of Figure 31

indicate again that the explosions are relatively richer in high

frequencies than are the earthquakes. The three weight vectors

obtained for the three choices of the damping parameter show the

same tendency to become erratic as the damping is decreased and the
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Figure 31. The plot of the feature weights vectors for the VFM discriminant
at RKON (three top panels) shows most clearly the separation
in the relative magnitudes for the two classes for a small number
of degrees of freedom.
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degrees of freedom increases, and, for the K I case, the low

frequency to high frequency slope is almost completely lost. For KI
a 10 and K - 30, we note that, although for frequencies above 1.0 Hz

the weights tend to be negative almost everywhere, there is a

pronounced scalloping in the set of weights. The bivariate discrim-I
ination used by Savino selected the two frequencies 0.6 Hz and

t3.25 Hz. It is amusing to note that there is a pronounced dip in

the weight vector around 2.9 Hz, and one speculates that a slight
decrease in the upper frequency could possibly have produced an even

more disjoint separation of the events in the data set. Again, the

set of weights which have been incorporated into the automatic
discrimination routine are those obtained for the damping parameter
of K - 10.

The jackknife calculation of the RKON data for the three
values of the damping parameter (Figure 32) shows that the explo-
sions have a wider spread than the earthquakes. Whereas Kabul

produced a somewhat tighter clustering of the values of d* for the
explosion population, here we find exactly the opposite -- that the
tightest grouping of events occurs for the d*'s obtained for the

earthquake population. However, if one looks in detail at the

values of the discriminate function d*, we see that the wide spread
in tne explosion population is determined principally by two events,
event 33 and event 79. Event 79 is so clearly anomalous that it
would certainly be better to recalculate this example leaving event
79 out of the data set. That would have the effect of producing an

explosion Gaussian which was much less broad.

The tendency of d* for some events to be affected by the

choice of damping parameter (previously noted in the discussion of
tne Kabul data) is particularly pronounced for event 33 at RKON. We

* see that when the damping parameter is small (the number of degrees
of freedom is large), event 33 is clearly misclassified. However,

as the damping is increased, the set of weight becomes smoother, and

event 33 moves appreciably to the left. For the largest damping
* (that is, tne fewest degrees of freedom), event 33 is indistinguish-

able from its neighbors in the explosion population. The right most
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panel in Figure 32 shows particularly clearly the fact that the
Gaussian width of the explosion population is entirely controlled by

the single anomalous event, explosion number 79.

As before, there is a clear relationship between the results

obtained in this analysis based upon the linear discriminant

function and the jackknife calculation and the bivariate
discrimination of Savino, et al. (1981a). This is shown in

Figure 33. Three events, explosion 79 and earthquakes 28 and 34,

are misclassified by both criteria. Explosion 33, which was missed

only when the damping parameter was set anomalously low, and

earthquakes 77 and 143, are positioned in the ambiguous central

portion of the bivariate plot. We note again, however, that there

are some events, in this case earthquake 7 and earthquake 24, which

are correctly classified by the linear discriminant analysis whereas

a neighbor, earthquake 143, is misclassified for all three values of

a damping parameter.

If one were to draw a line on Figure 33 which best separated

the two populations, the three events, 79, 28 and 34 would be
incorrectly classified. Table 2 (see column Original Errors)

indicates that the linear discriminant analysis of all the data

misclassified these three events also, as well as one additional

event, earthquake number 77. Jackknifing changes the picture only

slightly by indicating the marginal nature of event 143.

4.4 ILPA RESULTS

The VFM results for the Iranian long period array have been

selected for the final presentation of linear discriminant analysis

and jackknifing. Although there are 56 events in the data set (see

Table 3), only four of these are explosions. Figure 34, at the

bottom, shows again the band of magnitudes which encompasses 95

percent of the relative mb's for the explosion and earthquake

classes. The three panels at the top of this figure show the three

sets of weight vectors obtained from the linear discriminant*11
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ILPF102(303-751 GISCRIMINFNT WEIGHTS
OATIE-05/05/81 TIME-12:55:21
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Figure 34. The plot of the feature weights vector for the VFM discriminant
at ILPA clearly reflects the separation between the two popula-
tion mean magnitudes over the range from 0.5 to 2.0 Hz.
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analysis. We note here that, since the data set is larger, the

numbers of degrees of freedom for the three choices of damping

parameter is somewhat larger than it was in the past. The tendency

of tne weights to become more jagged as the damping decreases is

again apparent as is the positive to negative trend with increasing

frequency. Note that for all three values of the damping parameter,

the weight vector components are essentially zero for frequencies

above 2.5 Hz, and this clearly mimics the lack of separation between

the two relative mb classes shown in the bottom panel. Savino

selected for the bivariate discrimination, the frequencies 0.55 Hz

and 2.0 Hz. If one were to select a single pair of frequencies for

performing discrimination from the plots of the weight vectors shown

here, one might prefer the choice 0.75 and 1.75 Hz. Whether or not

this would yield an improvement in Savino's method is not known.

When the linear discriminant function is jackknifed for the

tnree choices of the damping parameter, the results presented in

Figure 35 are obtained. Explosion 21 is missed in all three cases,

and its d* value of 0.5 clearly places it in the midst of the

earthquake population. The paucity of explosion data causes the

best fitting Gaussian to change radically as the damping parameter

is changed. As with the RKON measurments, a single anomalous event,

event 21, has caused the explosion Gaussian to be significantly

broader than the earthquake Gaussian. With only four explosion

datums, and with one of them clearly being anomalous, it is obvious

that event 21 is having an undue influence on the choice of linear

discriminant weights, and these data should probably be reanalyzed,

deleting event 21 from the analysis. Just as explosion 21 is

misclassified for all three choices of the damping parameter, so

earthquakes 147 and 168 are misclassified for all three choices.

Event 65 is a borderline case which is correctly classified when the

damping is strong, but misclassified when the damping is small. We

recall tnat when the damping is small, the number of degrees of

freedom is high, and one is fitting a higher dimensioned hyperplane

through the parameter space. It is to be expected that when the

damping is small, one will have a smaller number of misclassified
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events, but that is inevitably accompanied by an increased
uncertainty in the classifications of every event.

The comparison between the linear discriminant and jackknife

classification methods and the bivariate classification performed by

Savino, et al. is presented in Figure 36. Explosion 21 and

earthquake 147 clearly fall into the wrong groupings from both

points of view. Events 65 and 166, which are misclassified in a

linear discriminant analysis, were not included in the bivariate

discrimination by Savino. The comparison between the value of the

linear discriminant d(all) obtained when the entire data set is

processed with a damping parameter of 10 and the set of values d*

obtained for the linear discriminant when the data is jackknifed is

shown in Table 3. As was noted in Figure 36, a linear discriminant

classification obtained by weighting all frequencies is no more

effective than a bivariate discriminant based on the frequencies of

0.55 Hz and 2.0 Hz in classifying the earthquake 147 and the

explosion 21. It can be seen in the right most column that event 65

and 166, which were not discussed by Savino, are clear borderline

cases which are correctly classified when the data is lumped

together, but which are misclassified when the jackknife is

performed.
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